Complex States, Emergent Phenomena & Superconductivity in Intermetallic & Metal-like Compounds
Personnel
Project Leader(s):
Paul Canfield
Principal Investigators:
Sergey Bud'ko, Paul Canfield, John Clem, David Johnston, Adam Kaminski, Vladimir Kogan, Ruslan Prozorov, Makariy Tanatar,
Kyuil Cho, Abhishek Pandey
Overview
The specific scientific question to be addressed by this Project is—can we develop, discover, understand and ultimately control, and predictably modify new and extreme examples of complex states, emergent phenomena, and superconductivity? Materials manifesting clear or compelling examples (or combinations) of superconductivity, strongly correlated electrons, quantum criticality, and exotic, bulk magnetism are of particular interest given their potential to lead to revolutionary steps forward in our understanding of their complex, and potentially energy relevant, properties. Experiment and theory are implemented synergistically. The experimental work consists of new materials development and crystal growth, combined with detailed and advanced measurements of microscopic, thermodynamic, and transport properties, as well as electronic structure, at extremes of pressure, temperature, magnetic field and resolution. The theoretical work focuses on modeling transport, thermodynamic and spectroscopic properties using world-leading, phenomenological approaches to superconductors and modern quantum many-body theory.
The ability to address these questions is illustrated by this group’s past work on many of the key systems and phenomena that have defined this field over the past decades: High Tc oxide, RNi2B2C and MgB2 superconductivity, Ce-, Yb- and transition metal-based heavy fermions, quantum criticality, quasicrystals, spin glasses, spin ladders / spin chains, vortex and domain pattern formation, ferromagnetism and metamagnetism.
- Design and growth (P. C. Canfield, S. Bud’ko, D. C. Johnston, J. Schmalian,V. Kogan)
- Advanced Characterization (S. Bud’ko, Y. Furukawa, A. Kaminski, R. Prozorov, M. Tanatar)
- Theory and modeling (J. R. Clem, V. Kogan, J. Schmalian)
Highlights
Publications
Export: Tagged BibTex
Nath R; Singh Y; Johnston D C . 2009. Magnetic, thermal, and transport properties of layered arsenides BaRu2As2 and SrRu2As2. Physical Review B. 79:174513. abstract
Export: Tagged BibTex
Sefat A S; Bud'ko S L; Canfield P C . 2009. Properties of RRe2Al10 (R=Y, Gd-Lu) crystals. Physical Review B. 79:174429. abstract
Export: Tagged BibTex
Samuely P; Pribulova Z; Szabo P; Pristas G; Bud'ko S L; Canfield P C . 2009. Point contact Andreev reflection spectroscopy of superconducting energy gaps in 122-type family of iron pnictides. Physica C-Superconductivity and Its Applications. 469:507-511. abstract
Export: Tagged BibTex
Mazin I I; Schmalian J . 2009. Pairing symmetry and pairing state in ferropnictides: Theoretical overview. Physica C-Superconductivity and Its Applications. 469:614-627. abstract
Export: Tagged BibTex
Densmore J M; Das P; Rovira K; Blasius T D; DeBeer-Schmitt L; Jenkins N; Paul D M; Dewhurst C D; Bud'ko S L; Canfield P C; Eskildsen M R . 2009. Small-angle neutron scattering study of the vortex lattice in superconducting LuNi2B2C. Physical Review B. 79:174522. abstract
Export: Tagged BibTex
Khasanov R; Kondo T; Strassle S; Heron D O G; Kaminski A; Keller H; Lee S L; Takeuchi T . 2009. Zero-field superfluid density in a d-wave superconductor evaluated from muon-spin-rotation experiments in the vortex state. Physical Review B. 79:180507. abstract
Export: Tagged BibTex
Liu C; Kondo T; Ni N; Palczewski A D; Bostwick A; Samolyuk G D; Khasanov R; Shi M; Rotenberg E; Bud'ko S L; Canfield P C; Kaminski A . 2009. Three- to Two-Dimensional Transition of the Electronic Structure in CaFe2As2: A Parent Compound for an Iron Arsenic High-Temperature Superconductor. Physical Review Letters. 102:167004. abstract
Export: Tagged BibTex
Rathnayaka K D D; Naugle D G; Belevtsev B I; Canfield P C; Budko S L . 2009. Low-temperature metamagnetic states in single crystal TbNi2B2C studied by torque magnetometry. Journal of Applied Physics. 105:07e111. abstract
Export: Tagged BibTex
Tanatar M A; Ni N; Samolyuk G D; Bud'ko S L; Canfield P C; Prozorov R . 2009. Resistivity anisotropy of AFe(2)As(2) (A=Ca, Sr, Ba): Direct versus Montgomery technique measurements. Physical Review B. 79:134528. abstract
Export: Tagged BibTex










